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Milosz P. Wnuk
and
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ABSTRACT

The time dependent and path dependent processes occurring
prior to fracture in the regions close to the crack tip have been
considered for an axially symmetrical geometry. To account for
nonlinear behavior of glasslike high linear polymers within the
localized zones of high stress and to describe the rheological response
of the bulk material, a model is developed, which postulates that the
crack is surrounded by a Dugdale-type thin plastic zone, while the
less stressed matrix is assumed to behave as a linear viscoelastic
solid.

According to the present model the yield point itself is a function
of time, as suggested by Crochet. This implies that a faster loading
corresponds to a higher yield stress and allows for quantitative
description of the initial stages of delayed fracture, i.e., the process
of formation of the craze.

Several cases of creep failure, under different histories of
loading, are discussed. In particular,a universal equation
po/pG = [K(o)/K(t*) ]% for creep failure under step-load condition
is derived. It relates the tensile strength P, to the time of appli-

cation of the load and material characteristics: is the Griffith

Pg

stress, while K(t) encompasses the rheological properties of the solid.



This equation is shown to be true both for the 3- and 2-dimensional
problems, if only the ratio po/Yo is small (Yo denotes initial yield
stress). It resembles considerably the Williams equation derived
earlier for delayed fracture caused by a spherical void under hydro-
static tension,

In the limit, both Griffith theory as well as its modification

by Irwin and Orowan can be derived from the present analysis.
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DELAYED FRACTURE IN VISCOELASTIC-PLASTIC SOLIDS

1. Introduction

It is realized that the presence of a crack in a glass~like linear
high polymer induces non-uniform deformations, such that the stresses
and strains within the zones close to the crack tip are markedly dif-
ferent from the corresponding quantities in the 'matrix' surrounding
the crack. The experimental evidence, gathered by Berry [2],

Cessna and Sternstein [4] , Kambour [9], shows that fracture in

high polymers is preceded by a considerable irreversible deformation,
localized along the crack plane and constituting an ""extension'' of the
crack, This phenomenon has been observed for amorphous thermo-
plastics by Kambour [9]. The term '"craze' has been coined for the
regions where the physical properties of highly deformed material

have been changed. It is there, where most of the energy required

per unit area of the new surface is invested: according to rough
estimates of Kambour in fracturing of glassy polymers (like PMMA)
1.59 of energy available is used to overcome intermolecular attraction,
about 169 is lost as work on plastic deformations and the rest is used on
irreversible viscoelastic displacements inside the craée. It was further
shown [9 ], that formation of a craze and its final sizg is not uniquely
determined by the load or deformation that acts at any instant on the
bulk sample.

It appears thus that neither purely elastic nor elastic~plastic
considerations would be adequate to describe the path-dependent growth
of plastic regions and the rheological response of an apparently glassy

matrix. Until recently there were no analytical treatments available
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(within the framework of continuum mechanics), which would attempt to
describe the time~dependent processes along with the path-dependent
plastic deformation at the crack tip occurring prior to fracture, The
earlier works by Williams [21 ], Schapery and Williams [18 ],
Knauss [10] have tried to describe the delayed fracture in glass-like
polymers applying the theory of linear viscoelastic solids. In some of
these works, Williams [21 ], the singularity in stresses at the crack
tip have been intuitively avoided by introducing a Neuber-like
characteristic size, over which the stresses were averaged. How-~
ever, this quantity, being somewhat ambiguously defined, entered in
all the pertinent final results (the material ahead of crack tip was
considered to act as the set of independent columns, to each of which
a critical strain criterion was successively applied to describe the
spreading crack).

On the other hand, the energy considerations based upon the
first law of thermodynamics, as adapted to fracture problems by
Schapery [17], were carried out by the use of the exact stress
distribution in a linear viscoelastic body containing a spherical void
subject to hydrostatic tension: this geometry being chosen, Williams [22],
to avoid analytical difficulties in attacking the problem of a real crack.

The fracture behavior of polymers has been studied both experi-
mentally and analytically under different histories of loading and for
several non-uniaxial stress states, by Smith [19] and Knauss [10].
These experiments have shown that the critical stress (or critical
deformation) does depend on the rate at which strains are applied and

on the path taken through the space of external loadings.




Recently Cessna and Sternstein [4] have proposed a rheological
model for the quantitative description of viscoelastic plastic behavior of
_lassy polymers prior to fracture. The suggested model consists of a
Maxwell element joined in series with a Voigt element, in which the
dash-pot is non-linear; it obeys the Eyring hyperbolic-sine flow law.
This model does incorporate the minimum number of required features
for the expected response of the solid, namely, immediate elastic
deformation, viscous flow and retarded elastomeric response, which
is stress=-sensitive énd which displays a stress-activated yielding, i.e.,
yielding at the high stresses in the critical zones at the crack tip, but no
yielding at lower stresses in the bulk material. They [4] determined
experimentally five rheological constants characteristic for the model,
adjusting it in this way to describe PMMA, Their failure data seems to
agree well with the theoretical predictions, based upon an approximate
analysis of stresses and strains ahead of the crack. Although the use of
the discrete rheological constants, instead of the corresponding
spectrum, may appear insufficient in other applications, Cessna and
Sternstein's approach illustrates well the problems encountered in the
viscoelastic~plastic analysis. It gives also an excellent insight into
fracture mechanics of glassy polymers.

In connection with the present study the observation by Cessna
and Sternstein [4 ] is noteworthy namely that the parameter related to
the size of the plastic region at the moment of failure initiation appeared
to be a material constant, almost insensitive to the initial stress
concentration factor and the strain ratc (within the range 10—2' to 1074
sec—l). This implies, as will be evident in the next chapters, that the

critical opening displacement, postulated in the present paper, does
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exist*. To support this statement we shall also refer to the earlier
experimental results, Smith [197], Low [117], Knauss [107] and
Mueller and Knauss [ 13 ], who in addition related the critical strain
to the temperature reduced strain-rates applied during a constant
strain rate failure test.

Once the critical displacement w* or critical strain e* is
defined, we shall proceed to formulate the condition for incipient
fracture by requiring that the displacement at the end of the crack shall
be equal to its critiéal value. This is a sufficient condition for fracture,
c.f., Murrel [12], Rice [16], Wnuk [23], and it has been used by a
number of authors: Williams [21], Goodier and Field [6] and Olesiak
and Wnuk [147.

The present paper offers an attempt to solve the problem of
stress, strain and displacement distributions around a penny-shaped
crack, under an assumption that the Dugdale type model of the crack is
adequate to allow for the quantitative description of the plasticity effects
occurring at the crack tip, while the matrix itself will be assumed to
behave as a linear viscoelastic solid (no further specifications as to what
rheological model we have in mind is necessary). In that way the
stresses, strains and dispiacement fields around the crack are to be

related to the scheme of loading, time-dependcat response of bulk

"~ Some investigators do not like the critical strain criterion for fracture,
as for instance W. S. Blackburn (private communication). They argue
that it is reasonable to have it as a result of the theory rather than as a
starting point.



material and to the plastic yielding present in the critical zones, where
the solid behaves, according to the model used, as a non-linear medium.
Furthermore, in the more general case considered here, the

yield stress itself is time dependent through the equation suggested by

Crochet [ 5 ]:

Y(t) = A+ :Ese’CX (1. 1)
where A, B, C are material constants, while for the function ¥,
describing the history of loading, some suitable representation is

chosen, as for instance in [5 ]:

(1.2)

Here the superscripts '""V'" and "E'" denote viscoelastic and purely
elastic components of the strains. Equation (l1.1) asserts that Y is a
monotonically decreasing function of ¥ . This implies, [5], that a
faster loading corresponds to a higher yield stress, as required by
experimental evidence, Heller and Stoll, Freudenthal [8].

Equation (1. 2) indicates also that the initial response of the
material is of the elastic-perfectly plastic type, as initially x=0 and
we have yielding along the critical zone, whose length is determined by
the magnitude of the applied pressure and the initial value of the yield
stress Y(o) = A + B. Next, the decrease of the yield point, under
constant load insufficient to cause the immediate fracture, will result in

lengthening and widening of the critical zones. Increase in size of the



plastic zones will be accompanied by the growth of displacements at the
end of the crack, This stage of delayed fracture may be compared with
the process of formation of the craze (Kambour L97).

The practical purpose of the present analysis is to predict the
time to fracture initiation by relating the material characteristics,
scheme of loading, the path taken in the space of external loads, as well
as the temperature and the strain-rates. All these quantities together
will determine the creep failure.

In the limit of vanishing viscoelastic-plastic deformation at
the flaw tip, the critical zone and the bulk material approach a homo-
geneous elastic domain, with a high gradient of stress near the flaw tip
(so called 'non-relaxed' crack). Under such a condition, the present
theory yields Griffith's result. At the other extreme, where a plastic
region of constant size constitutes the critical zone, the present analysis
reduces to Irwin-Orowan's modification of the Griffith theory.

Somewhat in between these two extremes falls the case considered
by Williams, i.e., that of a crack in a viscoelastic material under plane
strain or plane stress conditions [21 ] and that of a spherical void under
hydrostatic tension [22 ] In both cases Williams considered material to
be linearly viscoelastic, which allowed him to predict the delayed fracture,
but obviously he was not able to take into account any plastic deformation.
A similar representation, too, can be derived from the present theory, if

plastic effects are assumed to be small.



2. Stress And Strain Distribution. Time-Dependent Yield Point.

The problem of a growing crack in a viscoelastic medium or
that of a crack of constant length but subjected to certain variation in
time loading cannot be treated by means of standard method of
solution to linear viscoelastic stress analysis, i.e., by the use of
the correspondence principle. DBoth the above mentioned cases
reduce to a mixed boundary value problem for which the regions
where the different types of boundary conditions are prescribed, are
time-dependent. This does not allow to evaluate the required integral
transforms with respect to time,

For one important case, however, when all the time~dependent
quantities are monotonically increasing with time, the distribution of
stresses and strains around a crack can be determined by means of an
""extended correspondence principle', as proposed by Graham [ 7].

In the model developed here we shall consider a penny~-shaped
crack to be surrounded by a Dugdale-type, thin plastic zone, while the
bulk material will be assumed to behave as a linear viscoelastic solid,

governed by the constitutive equations:

r't de, . (7)
le =J Gl(t-'r) 5= dr
-co
" (2.1)
5 = rGz(t-'r) é—gig—) dr

where Gl(t) and Gz(t) are the relaxation moduli in shear and isotropic



compression respectively, sij and eij denote the deviatoric parts of
stress and strain tensors, while éijs and éije are the hydrostatic
parts of these tensors. It can be readily shown that the Graham [ 7]

formula for the displacements in the crack plane (z=0)

a(t) v
2 d ,t) d
4 (pst) = £ K(o) - ipz(s )2% +
(v = p7)= (v -s7)"
p o
(2.2)
t a(t-T1) v
+ % K(T) Re ZdV s PP<ZS:t-E)d; dr
(v =-p)*= (v = s7)"
o
P o
can be written simply as
t
K
uz(p,t) = ug(p,t) +f KEZ; u;(p,t-'r) dr (2.3)
o

Here uz (t) is the elastic solution to the same boundary value problem
p(p,t) is the pressure applied at the crack surface (including sections
of the constant yield stress), p is the radial dimensionless coordinate
p = r/a (the other coordinates being z and 6), a(t) is an outside
radius of the plastic zone; it is larger than, or in the limit, equal to
the length of the crack £(t), and finally the function K(t) is defined

as [7]:

(2.4)

K(t):gl[

2(2Gy(s) + G(s)) ]
; s—t
{(s)

Z s B3 sk
s (Gl(s) + ZGZ(s)Cr1



where G’f(s) and G;:(s) are the Laplace transforms of the relaxation
moduli and o‘{;-l denotes the inverse Laplace transform. Formula
(2.3) is valid for any linear viscoelastic solid with properties
characterized by the function (2.4), Formulae of the same type
are shown to be true for all components of displacement and strain
tensors, while the stresses in the viscoelastic matrix are the same
they would have been in an elastic body.,

Under the additional simplifying assumption that the Poisson

ratio is constant, the moduli G1 and GZ can be simply related:

C\r1 = (l—ZV)GZ/(1+V) and equation (2. 4) reduces to, [7]:
K(t) = "1[—3(—1-311 — (2. 5)
s G’-i‘(s)
or
K(t) = 2(1-v) D(t) (2.6)

where D(t) is the creep compliance.

Our model of a crack is different from those introduced earlier
by Goodier and Field [6] for the 2-dimensional problem and Olesiak and
Wnuk [14] for the 3-dimensional problem, in two major aspects: first
we allow the yield stress to vary with time Y =Y(t), according to
equation (1.1). This function is a priori unknown and it will be determined
after the solution to a corresponding mixed boundary value problem for a
linear viscoelastic half~space is found. Only after all the components of

the tensors e;’j and €ij are known, may the invariant X be constructed,



as required by equations (1.1) and (1.2). The second difference lies in
the assumed nature of the matrix surrounding the crack: it is sensitive
to the time-~dependent processes in contrast to the previous solutions.

According to Crochet [5], the yield stress, which initially
equals Yo’ decreases with time, allowing more and more yielding to
occur at the tip of the yielded zone. The rate of this increase is
determined by the strain intensity function ¥ = [( eij - e;)j) (e:ij - efj) ] ’%;
eij denoting the viscoelastic strains evaluated at the most strained point
belonging to the elastic domain. In our case it is the point at the =nd of
the plastic zone r = a.

After instantaneous yield, which determines the initial length of
the plastic zone, the yielding will proceed: we imagine this process can
be approximated by a stair-step like function, as shown in Figure 1,
while the length of plastic zone increases at the same time. (In fact,
the true distribution of stresses v, will look more like the continuous
curve in Figure 1b). This distribution, in turn, will be represented by a
single straight line, drawn at certain medium height, i.e., at the average

between the initial yields stress Yo and the instantaneous yield stress

Y(t) evaluated at the point r = a.
<Y(t)> = %- (Y + ¥(t) ] (2.7)

of course, the average <Y> is a function of time, so far unknown.
The distribution of stresses around the crack in a viscoelastic

matrix, dccording to the extended correspondence principle, is the

same as it would be in the elastic solid. Therefore, using the results

of Olesiak and Wnuk [14], we have
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for 0<_p<m,

for m<p < 1,

and for p>1,

2 1
=-2V\ sin_l (-2;—) - A Sin_ll:(p(l'f)\))_l('&ziz) ] %'

zZ
o = 0
r
cg = -(1+24) P(y)
o = <Y>
z
o, = RO (B)F - w <y>0-E)P) 4 <v>
oy = 2<Y> -« plt) (%)2 - <Y>[1-(£§-)ZJ (2. 8)
2<Y > 1/1-m? 1,1
v, = Z2 [<1+x>sin'<—'2£n—-z> sin™h ()]
p -m
2<Y > 2 1/1 2 \2
o= == ;[(m\) (1+ % () = « ]sin” ‘227 +
P %
-1 21f p%-1 \2 -1 1
n N sin T [ {p(1+\) (-Ez—:-—z-) ] -\ sin (—)E
p”-m P
2<Y > 2 2\%
oy = =X g[(1+>\) (2v-2 (32) )+%]sin'l<;21j1m2> ;

p -m

This is true for case 1, i.e., loading p = p(t) applied on the surface of

the crack, while for the case 2, i.e., tensile stress applied at infinity

we obtain:

for 0<p<m,

oy = 0

Z

o, = Blt) (t-1)
o = p(t) (2\)+K)

-11-



for m_<_p$1, v, = <Y>
o = <Y> [(1-0) (1-x) + (-rgl-)z] (2.9)
oy = <Y> [(1-N) (2\)+u)-34.(—r;1—)2]
2 \b
and for p>1, o = 2<Y> E—)\-XSin-l (l) + sin'l i-m
- . s 2 p 2 2
p -m
2<¥> M2 . =1 1-m® \Z 11
O'r = p- 3[1‘% + A ("F-)") ]sin '—2-—-'—2- -(1—K)>\Sin (—-)2
p”-m P
NS
2<Y> m,.2 . =1/ 1-m
0‘e = —""'_Fr—‘-'— [2\)+K-M.-(-b—) ]s1n (m) -

- {2v+u) N sin-l (-:;-)E.

The ratio A = P/<Y> is here a function of time, as both p and <Y> can
vary with time. Thus it is seen that the stresses will also vary with
time. Other notations: # =(1-2v) (1+v)/2, m= ¢/a, with """ as
the crack length and "a' as the outside radius of the plastic zone. All
stresses are given on three different sections: along the crack 0<p<m,
inside the plastic zone m<p<l and outside of it p>1, It can readily
be observed that the stresses pass through a discontinuity at the point
p=m.

The dimensionless length of plastic zone m is related to the

dimensionless load, N\, as required by the finiteness condition, [14] :

nf-

(1+22) (1
1+N )
m = (2.10)

(1-23)7F  (2)

-12-



N

The numbers in brackets behind the formulae designate the corresponding

case of loading: we shall use this type of parallel notation throughout the

paper.

At the point p=1, i, e., at the end of the plastic zone, we have

(1) v, =<Y>

=222 (2)
o <Y> AN
e ==—==2u% [ (1+v) +1]
r E 2(140)
o  <Y> AN 2
cp=" g (FvZu =,
: (14))

(2) o‘z=<Y>

o =<Y> [1+(x-1 - anZ ]

(2.11)
g =<Y> [Zv-(2v+n)x+%x2]
e‘;’= <g> [2x+(1-2%)\]
(2.12)
eg = <3E{> §2K+[-\)‘+n(\)-l)])\—
-u(l+\)))\2
eg= <§> 3-l[v+( l+\))m]+u(1+\;)x22

The further analysis, leading to the derivation of the function <Y(t)>, will

be carried out under the assumption that the ratio of applied load to yield

stress is small (A1), Then the above equations reduce to

qQ
n

q
n

<Y>

<Y>

2v <Y>

E:o <Y > 2

z E "

OC = SXZ 5y (2.13)
T E

o —

ee = 0

13-



These values of stresses and strains at the point p= 1 are the same for
both cases of loading (the terms O(\) and higher have been neglected).

The viscoelastic strains at the tip of plastic zone are given by

5o

= = 2% (
€r—€z— E —-E—f <YtT)>dT
d (2.14)
‘g
Combining (2. 14) and (2. 13) we can now construct the strain intensity
1
function ¥ . First, we observe that y=[(¢,. - e.o.) (e.. - e%)]z can

ij ij ij
be rewritten as

_ _ o _ 0 1 _ _0,2.%
x= [leyy - ) ey - e+ 305, - )P (2.15)

or upon substituting

ee- ee =0
o o, _ 0,2 0,2
(e.. - elJ) (e1J -eij) = (e =€) +(er- er) -
o o)
-(e_ - er) (eZ - ez) (2.16)
1 0,2 _ 1 - _ .0yq2
we have
2 24 %
%= [le, - e))" + (e - eN]% (2.17)
and finally, taking into account (2.14) and (2.13), we obtain
Vor (K(r)
A4 T _
_Tlm <Y(t-7)> dr (2.18)
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Next, we proceed to determine the function < Y(t)> itself.
Recalling the Crochet equation Y(t) = A+ B exp (-Cx ) where A,B,C
are material constants, and using the definition of the average yield
stress 2<Y¥>= YO + Y(t), we derive an integral equation for the un-~

known function Y(t), namely,

t .
V()= A+B exp| - —=EZ [(A+B) e%% -1) +f im Y(t-7) av 10 (2.19)
o

By subsequent two-fold differentiation we reduce this formula to an

equivalent differential equation:

2 -Y(Y-A)+ YT _ Kit)  K(£) <
= (Y-A)Z 2(A+B)K(O) NOR: (2.20)
or, in a more compact form
Gyt it =yP [P v+ Q)] (2.21)

where
(2.22)
To illustrate the possible behavior of the function Y(t) we shall

consider the particular case of a Maxwell solid for which P=OL/TO, Q=0.

Equation (2.21) reduces then to

(2.23)

\40

" .2 a
Yy-y = - 50— v
O
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similarly for a 3-element solid (a spring El connected in series with a
Voigt element EZ’ TZ) we have P = %-b e_t/TZ , Q= [ -ab (A+B‘;/’r2 ] e't/TZ;

thus equation (2.21) becomes

t/72 4 Fy. .ab, . ob \

e dt(y)" -5 7t o (A + B) (2.24)
where b= El/EZT2 » T and TZ denote the relaxation times for Maxwell and
Voigt elements, respectively. The first of the last two equations can be

readily integrated:

7

Y(t) = (2A+B) {1 - B

2(A+ B)

@ -1
exp [:—Z-T—(-A + B)t] - (A+B)
(o]

(2. 25)

In obtaining this result we have reduced equation (2.23) to a first order
differential equation, observing that (YVy - >'r)/y2 = -c%t— (y/y) and eliminating

two integration constants by use of the initial conditions:

Y(o) = A+ B

(2.26)

“Q

(o)

X(o

Y (o) -aB(A + B)

A

It is seen that according to equation (2. 23) the initial yield stress Y(o)
equals A + B, while for long times, it tends to the value Y{w) = A.
Insertion of (2. 25) into the relation defining the average yield stress
gives

<Y(t)>=Y_/¥(t) , ¥(t) = 1+ 8- Be'd/To (2.27)

~16-



where

(2.28)
c = 2uC(2A + B)/E

It is noteworthy that for an incompressible material ¢ = 0 and therefore
it turns out that the stress <Y > , according to the present model, remains
constant anyway.

We shall now discuss briefly the effect of a time ~dependent yield
stress (as obtained for the simplest case of Maxwell solid), on the stress
distribution as well as strains and displacements in the crack plane,

The stresses at the tip of the plastic zone, p = 1, decrease with
time after load has been applied, in the same way as <Y(t)> diminishes.
This is shown in Figure 2. Itis obvious that the rate of ''plastic relaxation'
strongly depends upon the numerical values of the constant A, B, C,
appearing in the Crochet equation. To have a rough estimate we assume
here the numbers suggested by the experiments of Heller, Stoll and
Freudenthal [87] and concerning the filled elastomers (combination of
polyurethane rubber with potassium chloride) which have been used for
modeling the mechanical properties of solid rocket propellants. For
A = 100 psi, B = 25 psi and C = 400 we have B/A = 0,25, 8=0,111 and
c~ 400 Y(0)/E which can vary between 1 and 40, depending on the ratio
of initial yield stress to Young's modulus. (The factor 2(1+v) (1-2v)
(1+B/2A)~ 1 for v= 0.3 and B/A=0.25). Although the diagrams in
Figure 2 show that the effect of coefficient ¢ on the rate of plastic
relaxation is considerable, it will be demonstrated that it has very

little effect on the time dependence of the displacement at the crack tip.

-17-



This, in turn, will result in very little sensitivity of the shape of
delayed fracture curve to the changes in numerical value of parameter c.
Indeed, the diagrams in Figure 3 drawn for ¢ = 1 and ¢ = 10 differ only
slightly. They were obtained under step load condition and they illustrate
the growth of displacements at the crack tip. The lengthening of the
plastic zone, as shown in Figure 4, depends on the parameter ¢ in a more
distinct way, while the curve governing the delayed fracture is practically
insensitive to changes in c: the curve for ¢ = 10 has been omitted in
Figure 5, as it was almost identical with that obtained for ¢ = 1 (curve 2
in Figure 5).

In all these diagrams, shown in Figure 3, 4, and 5, the fine lines
illustrate the corresponding results which follow under the assumption of
constant yield stress <Y(t)> = Yo' Although the differences are not
significant, it should be pointed out, that they may become more
pronounced for larger ratios B/A, i.e., when the mechanical properties
of a material are more strongly rate-dependent.

To derive the equations, according to which the curves in Figure 3,
4, and 5 were drawn, we consider first the displacements at the cracktip.
These, according to the results of Olesiak and Wnuk [ 14 7, and for small
N = p(t)/<Y>, are given by the relation common for both schemes of
loading:

2

2
W(L,1) = W () = ﬂ;—%\’—}i <v>% + ont. (2.29)

Thus, for step load p(t) = pOH(t), time~dependent yield stress

<Y>= Yo/‘i’ (t) and the constant crack length 1=1 we have

-18-



w(t) = ° % H(t) v (t) (2.30)

and the viscoelastic counter-part, according to the extended correspondence

principle (2. 3) will take the form (for t> 0):

t.
wi) = wio) [v() + f 2

Y(t - 7) d7 ] (2.31)

X

where W(o) = 2.(1-\)'2

2
Y 4 Opo/wEgYo ) Eg denotes the glassy Young modulus
and YO is the initial yield stress. Substituting ¥(t) from (2.27) as well as

choosing K(t)/K(o) = 1/'ro (Maxwell element) and integrating, we obtain:

t

-+
o

= 1+ 3(1-%) + (1+ 8) ) se'Ct/To (2.32)

This relation is illustrated in Figure 3. Similarily, the length of the plastic

zone, given by expansion of equation (2.8) for small \ as

2 N 2
avt [1+~571= 24 [+ YO HEO] ., N = p./Y, (2.33)

will increase with time, as shown in Figure 4 (in preparing the plots
XO = po/Yo was chosen as 1/4).

The delayed fracture occurs for time t = t, , at which moment the
displacement w(t) attains its critical value w¥; thus equation (2.30) governs
the delayed fracture, upon substitutiont =1t, , w(t) = w¥. Furthermore,

it is easy to show that the ratio
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wE Y w¥*
= £ 9 (2.34)

) T S0

W

equals the square of the Griffith critical stress divided by the square of
the applied load. The fracture energy Y appearing in the Griffith
formula is allowed here to possess a broader meaning: it equals the
plastic energy dissipation, y= Y w* as shown by Wnuk (23] if
N<< 1, for all those cases where this energy prevails over the
work of cohesion forces (for ductile materials the plastic energy
dissipation is about 1000 times greater than the work against cohesion
forces). Only in the limit (Y- E), when plasticity effects disappear or
become negligible, will the quantity vy regain its original sense of
surface energy. In this case, according to a simple Polanyi
formula [15], Y is given again as a product of stress (E) and critical

displacement w*. Taking this into account we have for delayed fracture

P t, mctu 1
R T I S R R P I AL
o

PG
(2.35)
This relatiun is illustrated by curve 2 in Figure 5.
All the above formulae simplify significantly when the yield

stress <Y> is assumed to be constant and equal to Yo' In this case
B=0, Y(t)=1 and we have

w(t) = w(o) [1+t/7 ]

2
a(t) = a(o) = 4,0[1 + xo/2] (2.36)

of-

P
0 —
o = (1 + t*/'ro)
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These equations have served to draw the fine lines in the diagrams in
Figures 3, 4 and 5.

Comparing curves 1 and 2 in Figure 5 we notice that the one
obtained at <Y>= const. (curve 1) and given by the third of equations
(2.36), does not predict the time to fracture t, in a conservative way.
In fact, the decrease in <Y > accelerates the time processes at the
crack tip. Therefore, the predicted fracture will occur earlier than it
would under the assumption of a constant yield stress. In order to have
the predictions on the safe side and retain the possibly the simplest form
of the equation governing the delayed fracture, it is suggested that the
lower wvalue of yield stress is taken as an estimate for <Y>., Thus for

<Y> =const. = Y(w), we obtain

P

1
o _| Y(o)|? -
I—)-(—} —[,Y—(OT} (1+t*/TO)

instead of equation (2.36). This gives a lower bound to the delayed fracture

-

(2.37)

curve, as shown in Figure 5 (curve 3 was obtained for Y(o0)/Y(0) = 100/125).

Finally a simple numerical example is solved: for given

p/pg = /2, p /Y, =1/4, c=1, g = 0.111

we find from (2. 33) time to failure t, = 2.71’0. For this value of t, it
follows from (2. 25) that the yield stress decreases from Yo to 0.9045 Yo
at the point of fracture, while the plastic zone increases from
1.03125 ¢ to 1.03806 »_.
o o}
It shows in this specific case that the 104 decrease in yield stress
influences the other results only insignificantly, particularly those which

are of practical importance. The length of the plastic zone at the point
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of fracture is only about 0. 7% larger than the initial length. Also times
to fracture evaluated from the simple equation (third in (2. 34), t*=3To)
and this resulting from (2.33) are not markedly different. For a
different polymer and larger times to failure, those differences could
be more pronounced.

The present result, however, does encourage us to make one
further step and assume <Y >= const, This will simplify the following
analysis considerably and will enable us to deduce a formula valid for
large sizes of plastically deformed zones around the penny-shaped
crack. The case of plane strain and plane stress will also be briefly

discussed.

3. Delayed Fracture, Viscoelastic-Plastic Deformation At The Crack Tip

The starting point for the derivation of an equation governing the
delayed fracture is the knowledge of displacements in the crack plane.
In particular, the displacements at the crack tip according to the Dugdale
model, as developed by Olesiak and Wnuk [ 14] for a penny-shaped

crack, are given by

oj

. o 4(1-V2)40<Y5> L+N - (1+2N7 (1)
(1,8) = w(t) = (3. 1)
uz w .n-Eg 1 - (1 _ )\2)%— (2)

This, substituted in (2. 3), gives the displacement at the tip of the crack in

the viscoelastic~-plastic solid, i.e.,
tax

L i(('r) *
- 1+)\(t)+[1+2>\(t)]’+_£K(o) CLEN(t=T)+(1+2N(t-7) ) T Jar (1)
W)=l £ (3.2)
> ]
P [ 1123 +f 2D o- 0P ) rar (2)
[0}
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-

where

2 _12; - g,
[“Eg V2(1-vI IF ., Y=Y wE

Pg ~
(3.3)
Y
W) = =% A= p(t)/<Y(t)>

This equation is generally true, i.e., it holds for any rheological response
of the solid (K(t) ), time-dependent yield stress (¥(t)), and an arbitrary
loading increasing monotonically with time, p(t). Assuming further a
constant yield stress <Y> = Yo (Y=1) and evaluating w(t) at the time t =t,,

we obtain the equation governing delayed fracture:
Cx

14M(t,) - (1+2M(t,) )2 +f%1§- [14M(t,-7) = (1+2M(t,-7)) E Tdr (1)
g, = ‘ oS
¢} 1
1-(1-x2(t*))%‘~'+f RO -1, - m)%lar (2)

oK(o) *

(3.4)

Here ;50 = '{’*/*b or gﬁo = pé/ZYCZ), while A = p(t)/Yo. It is therefore
seen that the parameter ?{o can have at least two interpretations:

(1) ratio of characteristic length J’,*=Trng*/4(l-\) 2')Yo which may be
viewed as a material property and the initial crack length Lo; (2) one-
half of the square of the ratio of the Griffith stress and the yield stress.

For the step load p(t) = poH(t) we obtain from (3. 4):

K(o) L+ X, —{1 N (1)
# 2

- (3. 5)
o K(ty) 1 -\/14\0 (2)

where 7\0 = po/Yo. This can be solved with respect to )\o’ yielding the

required relation for the tensile strength as a function of the time of
load application:
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o o Kit,) o K(t,)
) x
{9’0 1122 (2 -4, gési)]}? for f_< 1
Mo F (2 (3. 7)

for case 2. These equations are true, let us recall, for a viscoelastic-
plastic solid, axially symmetric geometry and the step load applied either
directly on the crack surface (case 1) or at infinity (case 2), while the
yield stress is assumed constant and equal to its initial value. Here

we do not impose any restrictions as to the size of plastic zone around
the crack.

It is easily seen that the critical load required for instantaneous

fracture, t, = 0, equals
A (t,=0) = g+ 24 (1)
(3. 8)
1
(B (2-4)1% for 4 < 1
N (£,=0) = (2)
1 for g > 1

which is identical with the result of the elastic-plastic analysis, according
to Olesiak and Wnuk [14]. At loads smaller than )\o (ty = 0) fracture is
also possible, but a certain finite time t, is now required before
instability can take place. To illustrate the above general result, i.e.,

equation (3.7), we shall substitute K(t*)/K(o) =14+ t*/'ro as it follows for a
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E
Maxwell element and K(t*)/K(o) =1+ _E_l (1 - 3~

2

/TZ) for the matrix
behaving like a standard linear solid.

The delayed fracture curves, obtained in this way for both
cases of loading, are shown in Figure 6 (case 1) and Figure 7 (case 2).
It is seen that the minimum load, at which fracture still occurs, is

zero for the Maxwell model, while for the 3-parameter model it is

J. 24 \}
N . =N _(t, = c0) = (3.9)
{ fo oo o it

These equations determine the horizontal asymptotic lines in the diagrams
in Figure 6b and 7b. Below N in there will be no fracture.

The parameter ngo = {,*/{,O illustrates the influence of the initial
crack length upon the critical load. This can be observed in both Figure 6
and Figure 7: the higher the value of 9{0 (smaller initial crack length)
results in shifting the creep failure curve ﬁpwards, which corresponds to
larger magnitudes of the critical load at the same time to break.
Particularly interesting is the curve obtained for 9(0 = 1l in the case 2,
as shown in Figure 7. This curve is valid for initial crack length =y
and any length smaller than that. It means the yfo = 1 curve is true also
for a flawless solid, without any crack present, or with microcracks
only. Hence, we can conclude that for very small crack lengths (of order

L, or smaller) the critical load becomes independent of crack length as

required by the second of equations (3.7) in contradiction to the Griffith
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theory. The breaking stress in this case has a finite value, which for

the two particular rheological models, can be read out straight from

the ¢’o = 1 curves in Figure 7. The result seems to support Berry's [ 2]
conclusion about the existence of "inherent flaw', which is characteristic
for a given polymer and which either exists in an apparently flawless solid
or perhaps can be generated upon application of load,

It seems also that the present result fits well with earlier experi-
mental data on tensile strength of glasses, Taylor [ 20] and Baker and
Preston [ 1], provided the proper rheological model is chosen. Agree-
ment is observed over several decades of time between the present
theoretical predictions, equation (3.7), and the measured tensile strength
of rubber (polybutyl methacrylate), Bueche [3].

For larger initial crack lengths, i.e., {,O>>1*, or equivalently,
when the applied load constitutes a small ratio of the yield stress
(A< <1), all the above equations simplify significantly. Equation (3. 4)

becomes now
T,

24, = A2t + J B A2 (g - ) ar (3. 10)
Q

which is common for both schemes of loading. Hence, for any given

history of loading p(t) = P, © (t), the creep failure is determined by

T
P 2 K(t) 2 -1
Eé = [CO (t*) +J K(:;) V9] (t*-T) dT] - (3011)
[o)

The minimum load, below which there will be no fracture is obtained

from equation (3.11) as
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2 .
min = Pg [© () + lim j
o

t*—» (0’0}

K

——

T
(o

P

A

; ot - ) ar] E (3.12)

Let us consider an example of application of equation (3. 11):
for a loading linearly increasing with time p(t) = P, Yt and for the

matrix represented by the Maxwell element K(1)/K(o0) = 1/1‘0, we have

p(ty)
Pg

o=

= (1+t,/37) (3.13)
(o]

while for the same history of loading and the 3-parameter element

K(1)/K(o) = .Ele-t/-rz-/Ez'r2 equation (3.11) yields

Sk

PG 2 * E

E 2
R(E&)_ = {l + -E—l- [1 + 2(;3-) (l-e-t*/TZ) -2 (2>]}. (3.14)

It is easily verified that if the time to fracture is assumed zero, then the
required opening pressure equals the Griffith critical load. In fact,

for small t, both the above equations reduce to

P(t*) :’_PG[ 1- t*/bTo]

(3.15)
E

1
p(t*) :_"PG[l = E—Z t*/6T2]
respectively.
The examples of application given here are merely illustrative,
as for any loading ¢ (t) monotonically increasing with time and any
rheological characteristic K(t) the equation (3.11), upon carrying out

the prescribed integration, will supply the basic relation between the
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magnitude of the load, the way it is applied and the time to failure, i.e.,
it will generate all the data necessary to predict delayed fracture in
polymers for which the ratio of the Griffith stress to the yield point is
small.

It is noteworthy that equation (3.11) assumes a particularly

simple form for a step loading p(t) = poH(t). It becomes then

tk
Po I.{('r) -1
=2 = 1 AN 2 3.16
b [1+ [ ®(o} 47 (3.16)
or even shorter
Py _ K{o) -+
5& = [K(t* ]® (3.17)

This equation yields PSP for t, = 0 as expected. It is interesting to
note that the minimum load (below which there will be no fracture) fol-
lows immediately from equation (3.16) upon recalling equation (2. 6)

and allowing t to tend to infinity. We have
s

1

= pg [E_Z_]z | (3.17a)

Pmin

where Ee and Eg denote the rubbery and glassy moduli, respectively. In
spite of the simplicity of the equation (3.17) and (3. 17a) they do have a
rather general range of application. As a matter of fact, we are going to
show that the same equation can be obtained for 2-dimensional states.

To begin with it should be noted that equation (3.11) is true not
only for a geometry considered here (penny-shaped), but also for 2-

dimensional case of either plane stress or plane strain. Indeed,
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assuming as a point of departure the results of Goodier and Field [ 6 J,
based on the Dugdale-type model, and following the same line of
argument as that at the beginning of this chapter, we arrive at

t>{<
2

-T4r—- 9’/0 ln{sec _1_2\-_ )\(t*)}+ f %—%-8 1n{sec %)\(t* - T)}d‘r (3.18)

o

which is an analogue to equation (3, 4). It holds for both plane stress and
plane strain, provided that the substitution for ‘Z{o = ch/Z.Y2 is done
correctly, i. e., one should not overlook that the critical stress Pg used
to define Q/o’ has different values in each of the two cases. In an explicit
form we have 9{0 = mwk Eg/‘LF,OYO for plane stress and
q/o = ww>l<Eg/4(l-§2) /z,OYO for plane strain.

Next, upon assuming a step load condition p(t) = poH(t), equation

(3.18) yields

_ 2 .ol _4 K@
)\o = = cos exp [ gfo R(t

)] (3.19)

%

This is equivalent to equation (3.7) obtained previously. Finally, letting
;50-* 0 i.e., excluding small cracks, we obtain as before equation (3. 9).
This is done by expanding 1n sec 1—;— A(t) into a power series:

In sec ZA(t) = Xz(t) CEe. ..

and observing that for any given history of loading X/ \}Zdo = (p—o ) ®(t).

To make this last step possible we have again used the relation
Y = Yow*, which is true for small A\, Thus, equations (3.14) and (3. 15),

obtained for a load linearly increasing with time, will also be true for the
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2-dimensional case. The same can be said about equation (3.17),
governing creep failure under the step load condition. It may be
concluded then, that equation (3.17), being the simplest of all
equations derived here, retains its rather general meaning. There-
fore, we shall call this equation universal, and the resulting curve,
which relates tensile strength to the time of application of the load,
according to equation (3.17), will be hereafter referred to as a
universal curve for delayed fracture.

We shall use equation (3.17) to predict fracture in solithane*
which is one of the polymers tested in our laboratories [13]. The
plot done according to equation (3.17) and using the temperature
reduced creep data from [13], is shown in Figure 8 (curve 1).
Curve 2, plotted in the same figure, was obtained for the same
material and using Williams [22] formula, which was derived for
an entirely different geometry (spherical void), different scheme of
loading (hydrostatic tension) and by a different procedure (energy
criterion for fracture). The Williams formula, written in the way

consistent with our notation, has the form

=

P

SR B L
pG’ ZK(t*) = K(O)

The resemblance of both curves is striking.

S

Equivoluminal composition of solithane 113.
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Finally, the plots in Figure 9 and Figure 10 respectively show the
delayed fracture curves for the 3-dimensional case (case 2) and the 2~
dimensional case (plane strain and plane stress, load applied at infinity).
No dssumptiOns have been made as to the size of the plastic zone. The
set of curves in Figure 9 was obtained from equation (3. 9), while that in
Figure 10 is governed by equation (3,.17), upon substittiting for
K(o)/K(t*) the reduced creep data for solithane. The dotted lines on
both figures show the delayed fracture curves, according to the universal
equation (3. 15), which holds for small 9(0. There are three universal
curves on each diagram, since now the vertical axis has a different
scale: )\0 instead of po/pG; the relation being )\o = ;2 2;50. Indeed,
the agreement between solid and dotted curves is satisfactory only for

small do, as expected.

4. Outline Of A Problem For Further Investigation.

Before concluding this report some comments are to be made.
Up to this point, it has been tacitly assumed that the critical displacement
w* remains constant throughout all ranges of the applied strain-rate, and
this constant value was assumed to be equal w*_ i.e., the 'glassy
displacement" éppearing to be critical at the instantaneous fracture (very
large strain rates). This is only approximately true. In general, the
quantity w* is shown to be a certain function of the strain rate. This
information is supplied by the experiments, as for instance those of
Knauss [ 10] and Mueller and Knauss [13]. The diagram in Figure 11

shows an example of the relation between the critical strain and the strain
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rate, as measured by Mueller and Knauss [13 ] for solithane at a
temperature of 20°C (all these data can be reduced to any other
temperature if the proper value for temperature shift o is inserted).
In order to incorporate these data into the present theory of
creep failure we shall substitute the function w* = w¥ ( é ), known
from the experiment, into eq. (3.2) from which the universal
relation (3.17) has been derived. In particular, under step load

condition and for small N\, equation (3.2) reduces to
‘ 2 2
w(t) = w(o) K(t)/K(o) , wio) = 2(1-V )Lopo/'n'EgYo (4.1)

which upon substitution t = t,, w(t) = w* gives condition for fracture.
However, before we proceed further, we shall have to rewrite equation
(4.1) in terms of strains at the crack tip rather than displacements,
as the experimental data are given in strains. Therefore, we define

the strain at the end of the crack
(4. 2)

Here d denotes certain hypothetical inital width of an infinitesimal
element placed between two opposite elastic~plastic interfaces. This
quantity was introduced on several occasions for instance by Goodier
and Field [16] and Olesiak and Wnuk [14], although, to the authors
knowledge, no numerical evaluations were ever given. Fortunately, as
we are going to show, the length d (sometimes called "'gauge width'') can
be eliminated from the final result (we shall also attempt to give a simple

estimate for it).
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It is easy to show that the glassy critical displacement satisfies

the relation

Pg &
wk= =) w(o) (4.3)
g  Pg
Substituting (4. 3) into (4. 2) we have

2
XVS&El= (1+ e¥) (_P.‘l) (4. 4)
& Pg
This will permit to eliminate the ratio w( o)/d. On the other hand, if

one insists on the direct estimate of the gauge width, it can also be

obtained from (4. 2):

d = *;/{Yo(1+ e*g)}. (4. 5)
where v denotes fracture energy associated with instantaneous fracture:
Yy = Yow’g while Yo is the initial yield point and ez is the breaking strain
at very large rates.
Next, we do have to define some average strain rate, as under the

step load condition, the strain at the crack tip is not constant, but it changes

with time as follows from (4. 1) and (4. 2):

E(t) = ) &Ko) (4. 6)

To make it comparable with the constant strain data we average the

function &(t) over the period of time (o,t,), as follows:

tx
<&t)> = .tl-* &(t) = W(°’ [RT?)') 1] (4.7)
(o]

or, eliminating d by use of (4.4) we have
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2
_ g K(ts) _ p_O
<e> = T [K(o) 1] (pG) (4. 8)

Hence, it is seen that the larger the applied load, the higher are the
strain rates (the relation (4.8) is somewhat indirect as both t, and
K(t,) change with load. Nevertheless, the above conclusion is
obvious).
Introducing the derived formulae into the equation w¥* = w(o)K(‘r*)/K(o),
which governs the delayed fracture under the step load condition and for

small ratios po/Yo’ we obtain

1+ e
p_O__ K(o) g ]%,

pc,— Kitd 14 ex[< e (t)>]

(4.9)

where € [<é>] is the function determining the rate dependence of the

*
critical strain and e:g is the "glassy' breaking strain. This equation does
incorporate two sets of data: the rheological characteristic K(t), available

for instance from creep tests, and those obtained in the failure tests

performed under constant rate condition. Of course, it reduces to the
K

g
The specification of the function e€* and evaluating the time to

universal equation (3.17), if one assumes ek [ <é>] = const. = &

fracture initiation according to the equation (4. 8) would yield more
refined data pertinent to the creep failure. This may not be a straight-

£ , e .

orward process, as the average rate <¢ > depends on a priori unknown t,
and most likely use of certain iteration procedure will be necessary.

It is believed, however, that the problem deserves further attention.
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